Release Note

Release Date : Nov. 2018

Product Ver. : Gen 2019 (v2.1) and Design+ 2019 (v2.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Index

• midas Gen

(1) Wizard sloshing for tank (mass adding)	4
(2) Foundation drop panel	5
(3) Check the criteria for regularity in plan as per NTC2018	6
(4) Inelastic hinge deformation result as per Eurocode8	
(5) Improvement ductile wall design as per NTC 2018	
(6) Pushover load pattern using story inertia force in RS analysis reference	11
(7) Check beam deflection as per ACI318-14, ACI318M-14 and NSR-10	
(8) Add steel design as per AISC360-16	
(9) Improvement of seismic design for ACI318-14, ACI318M-14 and NSR-10	
(10) Add design option for strong column-weak beam check on roof	15
(11) Revit 2019 interface	16
(12) Add material DB and load combination for aluminum	17
(13) Add options of As, use and Rho, use in shell flexural checking	18

• midas Design+

(1) Add steel design as per AISC360-16 and AISC360-16M	20
--	----

1. Wizard sloshing for tank (Mass adding)

• The wizard makes it easy to create a tank model.

Structure > Wizard > Tank

- Input size(**R1,H1,H2**) of the tank and height(**Hw**) of filling.
- **O** Select the Material and Thickness.
- Input Density of filling and Number of Mass & General Link.
- Select General Link.
 (Click line to define general link properties.)
- Set Number of Divisions for meshing plate.
- **(b)** Input coordination of Insert Point.
- Check the model shape with preview image

midas Gen

2. Foundation Drop Panel

- It is allowed to Install the drop panel at the bottom of the column.
- It is easy to create foundations with different thicknesses.

3. Check Criteria for Regularity in Plan as per NTC2018

Check Criteria for Regularity in Plan

EN 1998-1:2004 (E)

(7) For non-regular in elevation buildings the decreased values of the behaviour factor are given by the reference values multiplied by 0,8.

4.2.3.2 Criteria for regularity in plan

(1)P $\;$ For a building to be categorised as being regular in plan, it shall satisfy all the conditions listed in the following paragraphs.

(2) With respect to the lateral stiffness and mass distribution, the building structure shall be approximately symmetrical in plan with respect to two orthogonal axes.

(3) The plan configuration shall be compact, i.e., each floor shall be delimited by a polygonal convex line. If in plan set-backs (re-entrant corners or edge recesses) exist, regularity in plan may still be considered as being satisfied, provided that these set-backs do not affect the floor in-plan stiffness and that, for each set-back, the area between the outline of the floor and a convex polygonal line enveloping the floor does not exceed 5 % of the floor area.

(4) The in-plan stiffness of the floors shall be sufficiently large in comparison with the lateral stiffness of the vertical structural elements, so that the deformation of the floor shall have a small effect on the distribution of the forces among the vertical structural elements. In this respect, the L, C, H, I, and X plan shapes should be carefully examined, notably as concerns the stiffness of the lateral branches, which should be comparable to that of the central part, in order to satisfy the rigid diaphragm condition. The application of this paragraph should be considered for the global behaviour of the building.

(5) The slenderness $\lambda = L_{max}/L_{min}$ of the building in plan shall be not higher than 4, where L_{max} and L_{min} are respectively the larger and smaller in plan dimension of the building, measured in orthogonal directions.

(6) At each level and for each direction of analysis x and y, the structural eccentricity e_0 and the torsional radius r shall be in accordance with the two conditions below, which are expressed for the direction of analysis y:

$$e_{\rm ox} \le 0.30 \cdot r_{\rm x} \tag{4.1a}$$

$$r_{\rm x} \ge l_{\rm s}$$
 (4.1b)

where

- eox is the distance between the centre of stiffness and the centre of mass, measured along the x direction, which is normal to the direction of analysis considered;
- r_x is the square root of the ratio of the torsional stiffness to the lateral stiffness in the y direction ("torsional radius"); and
- li is the radius of gyration of the floor mass in plan (square root of the ratio of (a) the polar moment of inertia of the floor mass in plan with respect to the centre of mass of the floor to (b) the floor mass).

Story Result Table Ston Story Drift... Select Calculation Method Inelastic Hinge Story Drift (Time History Analysis)... Country Code : NTC2018 🖽 Story Displacement... **Define Building control** Story Drift Method 🛃 Story Shear (Response Spectrum Analysis)... Drift at the Center of Mass Building Control × 🛃 Story Shear (Time History Analysis)... Max. Drift of Outer Extreme Points 🛃 Story <u>M</u>ode Shape... Max. Drift of All Vertical Elements I ise Ground Level actor 🛃 Story Eccentricity... Story Stiffness Method Ground Level : 0 m 🛃 Story Shear Force Ratio... I / Story Drift Ratio Consider Mass below Ground Level for Eigenvalue Analysis 🖪 Torsional Amplification Factor... Story Shear Force Ratio Story Shear / Story Drift 💭 Stability Coefficient. Consider Wind and Seismic Loads for Flexible Floors 🛃 Irregularity Check Parameter.. OK Cancel Eccentricity Ratio 🖽 Weight Irregularity Check... Story Center (Mass/Load) Use Mass Use Axial Force O Use Shear Force 🕶 Overturning Moment... Building Control Load Case : EX ... Story Axial Force Sum... Scale Factor : Use Ground Leve Torsional Irregularity Check Ground Level : 0 Add Load Case Scale 🔄 Criteria for Regulatiry in Plan. Consider Mass below Ground Level for Eigenvalue Analysis EX Story Shear Force Ratio Modify Stiffness Irreg Criteria for Regulatiry in Plan Consider Wind and Seismic Loads for Flexible Floors Delete 🔄 Capacity Irregularity Check (Weak Story). Eccentricity Ratio Story Center (Mass/Load Story Stiffness Center C Use Shear Force Use Axial Force X-Directional Load Case EX • ... Load Case **•** Ð Scale Factor Y-Directional Load Case : EY • ... Load Case Add Scale EX 1 Modify Story Response of Time History Results Delete Story Center Story Stiffnere Cente Story Average X-Directional Load Case • ... Story Drift by Maximum of Vertical Elements Y-Directional Load Case • ... Cancel OK Story Response of Time History Results (i) Story Center Story Average Story Drift by Maximum of Vertical Element MIDAS/Gen 🖉 🕼 Result-[Criteria for Regulatiry in Plan] 🗙 OK Cancel Translational Mass Rx (El.Radius) Rotational Mass I evel Story X-DIR Y Y-DIR X (m) (N/g·m²) Y x Y X (N/g) (N/g) (m) (m) ► Roof 26.00 831405.41702 831405.41702 10.34 12.06 0.5263 0.7153 169004281.6555 Regular Regular 6F 22.00 773957.63175 773957.63175 155808106 2827 9.42 9.88 0 4405 0.4853 Regular Regular 5E 18.00 773957.63175 773957.63175 155808106.2827 9.31 9.00 0.4301 0.4020 Regular Regular 4F 157233873.5092 7.88 14.00 782526.19968 782526.19968 8.75 0.3810 0.3087 Regular Regular 3F 9.50 791094.76762 791094.76762 158658979.8772 8.54 7.22 0.3634 0.2601 Regular Regular 2F 5.00 799663.33556 799663.33556 160083446.6304 7.75 6.49 0.3004 0.2102 Regular Regular 1F 0.00 0.0000000 0.0000000 0.0000 0.00 0.00 0.0000 0.0000 Regular Regular

4. Inelastic Hinge Deformation Result as per Eurocode

- It is possible to check limitation of rotation for 1D element and wall.
- It is possible to confirm the damage state of the nonlinear behavior of the element by comparing it with the allowable deformation.

Check Procedure

5. Improvement Ductile Wall Design as per NTC 2018

Allowable of setting Boundary Element Rebar Data

Design Criteria for Rebars
Design Criteria for Rebars
For Beam Design Main Rebar : 1022 Rebar Stirrups : D10 → Arrangement : 2 → Side Bar : D13 → dT : 0 m dB : 0 m dT : 0 m dB : 0 m gP Consider Spacing Limit for Main Rebar Spliced Bars : None 50% 100% 100%
For Column Design Main Rebar : D22 Rebar Ties/Spirals : D10 Arrangement : Y: 2 do : 0 m Z: 2 Consider Spacing Limit for Main Rebar Spliced Bars : None © 50% 100%
For Brace Design Main Rebar : D22 Rebar Ties/Spirals : D10 → Arrangement : Y: 2 → do : 0 m Z: 2 → ✓ Consider Spacing Limit for Main Rebar Spliced Bars : None © 50% 0 100%
For Shear Wall Design Vertical Rebar : D10,D13 Rebar Horizontal Rebar : D10 ▼ End Rebar From : D13 ▼ Boundary Element Rebar Space: 0,2 m de : 0,05 m dw : 0,05 m Input Additional Wall Data
OK Close

Design Criteria for Rebars by Member
Design Criteria for Rebars by 👻
Beam Column Brace Wall
Option Add/Replace
Vertical Rebar : D10 💌
Horizontal Rebar : D10 🛛 🗸
End Rebar From : D13 💌
Boundary Element D10
Boundary Element 0.2 m
de : 0.05 m
dw : 0,05 m
Select Ductility Class
O DCM (Mediani Dacanty)

Modify Wall Rebar Data

Modify Wall Reba	ar Data	-		->
Wall ID	Wall Mark	Start Storv	End Storv	Bar
1	W1	1F	Boof	In
2	W2	1F	Roof	-
3	W2	1F	Roof	-
4	W2	1F	Roof	-
5	W1	1F	Roof	-
6	W2	1F	Roof	-
7	W2	1F	Roof	-
8	W1	15	Roof	-
10	W3	16	Boof	-
11	W3	1F	Boof	-
Create Sub Story : 1F	Wall ID	Roof	Property	
Rebar	Data			Dahar
Vertical	D13 @ 35	0 dw	u nebar , vertica	
Horizontal	D11 - @ 28	io 🛛 🗖 🕂	<u></u>	+
Fod 2	D12 0 10			
				- ' ·
BE Horizontal	D10 @ 20	0 de	eDist vDist	
Boundary Elen Concrete Face V Use Model	nent Length to Center of R Thickness	0 ebar(dw, de) 0,000	m : 0.05 , 1 m	0,05 m
	Add/Replac	e Del	lete	Close

5. Improvement Ductile Wall Design as per NTC 2018

Improvement Shear Design of Ductile wall

Detail Report

[[[*]]] ANALYZE SHEAR CAPACITY OF RC-WALL.

(). Compute maximum spacing of horizontal reinforcement. -. Smax = 8.300 m.

- (). Calculate shear strength of concrete. -. k = MAX[1.0+sqrt(200/d), 2.0] = 1.2152 (by d unit is mm). -. Acv = 1.08000 m²2.

 - 379.472 kN. 351.355 kN.

484.72 kN.

- Acu = 1.00000 n²2.00228 n²2. Acu = 1.00000 n²2.00228 n²2. Rhol = Acl / Acu = 0.00221 C. Rdc = 0.18/Gamma c = 0.1200 Str cp = NIM N_Ed/Äg, 0.2*fcd] = 771.0568 KPa. U. Rdc1 = [C. Rdc*k*(100*Rhol*fck)^(1/3) + 0.15*Str_cp]*Acu = U. Rdc2 = [0.035*k'(3/2)*sqrt(fck) + 0.15*str_cp]*Acu = U. Rdc = [0.035*k'(3/2)*sqrt(fck) + 0.15*str_cp]*Acu = U. Rdc = NMAY U. Rdc1, U. Rdc2] = 379.472 kH. U. Rdc U.Ed ---> Shear reinforcement is required. U.Wd = U_Ed-U_Rdc = 142.525 kH.

- (). Calculate required shear reinforcement. (Asw1 = 0.00007 m²2.) -. alpha s= M Ed / (V Ed*Lw) = 0.02946
- -. alpha_s= M_Ed / (U_Ed*Lw) = 0.02946 -. 8sw/s1 = Uwd / (0.75*fyud*alpha_s*Lw) = 0.00386 m^2/m. -. Calculate spacing s1 = 0.03062 m. - HSW/S1 = 000 / (0./5+y0w=alpha_s+t0) = 0.00500 m 2/m. - Galculate spacing s1 - Rhow = 0.00200 (by concrete and steel grade). - Rhow = 0.00200 (by concrete and steel grade). - Snax = Asw / (hu=Rhow) = 0.2532 m. - 0.0011ed spacing = All(st, snax; snax2] = 0.00002 m. - dsw/s = Snaw! = 0.00000 m 2/m.
- (). Calculate shear strength of reinforcement. Calculate snear scrength or reinforcement. - alpha s HEG / DECHEV) - 8 6.229 - U.Rd.s = 0.75×Asumfyud*alpha s/s = 105.28 kH.
- (). Check Diagonal tension failure of the web to shear.

Letter to Lagonal constant values or the web to shear - alpha, s < 2, n deplied spacing s (deer luput) = 0.05000 n, 0 Rols = 0.75 seguidalpha sister 20 nstr(s = 105, 0 Rol = 0.75 seguidalpha sister 20 nstr(s = 105, 0 Rol = 0 Rols = 0 Rols = 000, respectively. 185.243 kH.

(). Check ratio of shear capacity. -. U_Rd,c = 379.47 kN. -. U_Rd,s = 105.24 kN. -. U_Rd = U_Rd,c + U_Rd,s -. Rat_V = V_Ed / V_Rd

= 1.077 > 1.000 ---> Not Acceptable ! (). Check vertical web bar capacity.

- -. Rhov = 0.003 -. Rhoh = 2*Asw1/bwo/s -0.011 -. Hor = Rhoh*fud*bwo*0.9*d -3858 52 kN -. Ver = Rhov*fyv*bwo*0.9*d + N_Ed = 2067.55 kN.
- -. Ver < Hor ---> Not Acceptable.

- [[+]] CALCULATE HORIZONTAL REINFORCEMENT IN END ZONE
- Compute height of the critics; region her MNN MAY LW, MFW/G], MIN[2LW, 2hs] = 0.3333 w. 2.bot 0.0000 m. 2.tot 0.0000 m. 2.tot 0.0000 m. 2.tot 0.0000 m.
- (). Compute maximum spacing of horizontal reinforcement in critical region. - Bo bw 2+(De-Ebar/2-Sbar/2) = 0.168 m. - db = 0.010 mBar/2-Sbar/2) = 0.056 m. - Smax = MIN[Bo/3; 6+0bar, 125 mm] = 0.056 m.

SUMMARY RESULT OUTPUT

*.₩8 *.∀-	II Ma Rebar	rk : †	= W1 fyk	= 41	00 N/r	nm^2,	H-Rebar	: fy	/w = 4	00 N	louble Wmm^2.	Layer	Ret	oar.	< <rc-₩all des<="" th=""><th>ign Result≻≻.</th><th></th><th></th><th></th></rc-₩all>	ign Result≻≻.			
STO	HTw	hw t	fck	fyk	fyw	N(kN)	M(kN-r	m,LCB,	i₩AL,L	.w)	۷(k	N,LCB,	,iW4	AL,Lw)	AsV V-Rebar	AswH H-Rebar	End-Reba	BE-Rebar	BE-Length
12F 11F 10F 9F 8F 7F 5F 4F 3F 2F 1F	4000 4000 4000 4000 4000 4000 4000 400	250 250 250 250 250 250 250 250 250 250	24 24 24 24 24 24 24 24 24 24 40 40 40	400 400 400 400 400 400 400 400 400 400	400 400 400 400 400 400 400 400 400 400	140. 1709. 2545. 3356. 4139. 4893. 5631. 6091. 6767. 6893. 7966. 8981.	404.(1696.(2435.(3053.(3741.(5304.(5304.(5805.(7098.(8952.(11295.(11825.(5, 480 8, 720 8, 720)0))0))0))0))0))0))0))0))0))0)	526.(843.(1132.) 1271.(1450.(1625.(1833.(1882.(2189.(2511.(2912.(2116.(100000000000000000000000000000000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7200) 7200) 7200) 7200) 7200) 7200) 7200) 7200) 7200) 7200) 7200) 7200)	713.0100200 713.0100200 713.0100200 713.0100200 713.0100200 713.0100200 713.0100200 713.0100200 * 713.0100200 * 713.0100200 * 713.0100200	500.0100280 1065.0100130 1643.010080 1889.010070 2133.010060 2398.010050 2785.010050 3243.010050 4767.010050 6675.010050 1169.0100120	8-D13010 8-D13010 8-D13010 8-D13010 8-D13010 8-D13010 8-D13010 8-D13010 8-D13010 4-D13015 4-D13015	Not Use Not Use Not Use Not Use Not Use Not Use Not Use Not Use Not Use Not Use 2- 2-D10 0 2- 2-010 0	- - - - - - - - - - - - - - - - - - -

Rebar of Web is resisting for shear strength. → Modify rebar space limitation \rightarrow Change shear strength bv rebar

Add rebar data of end zone

Add END ZONE Chapter

Determine whether horizontal rebar of End Zone is necessary

Print out Space Limit of horizontal rebar of End Zone

midas **Gen**

		EN1000 1 1-2004		AITC	2010
Items	DCH (5.5)	DCM (5.4)	DCL	CD"A"	CD"B"
DIMENSION					
Thickness limit of web, b _{wo,min}	$[EN1998-1-1:2004, 5.5.1.2.3(2)] \rightarrow [5.4.1.2.3(1)]$ $h \ge max[0.15m h/201]$	[EN1998-1-1:2004, 5.4.1.2.3(1)] h > max[0.15m h/201]		[N1C2018, 7.4.6.1.4, p.236] h > max[0.15m h /20]	[NIC2018, 7.4.6.1.4, p.236] h > max[0.15m h /20]
	[EN1998-1-1:2004, 5.5.3.4.5(1)] →[5.4.3.4.2(1)]	[EN1998-1-1:2004, 5.4.3.4.2(1)]		[NTC2018, 7.4.4.5.1, p.230]	[NTC2018, 7.4.4.5.1, p.230]
Height of critical region, h _{cr}	$h_{cr} = max[I_{w} h_w/6]$	$h_{cr} = max[I_{w} h_{w}/6]$		$h_{cr} = max[I_{w}, h_w/6]$	$h_{cr} = max[I_{wr} h_{w}/6]$
POUNDARY FI FATFAIT (in avising sector)	$\leq \min[2I_w, h_s(n\leq 6), 2h_s(n\geq 7)]$	$\leq min[2l_{w} h_{s} (n \leq 6), 2h_{s}(n \geq 7)]$		$\leq min[2I_w h_s (n \leq 6), 2h_s(n \geq 7)]$	$\leq min[2I_{w}, h_{s} (n \leq 6), 2h_{s}(n \geq 7)]$
Dimension					
Longth of confined houndary 1	[EN1998-1-1:2004, 5.5.3.4.5(6)] →[5.4.3.4.2(6)]	[EN1998-1-1:20045.4.3.4.2(6)]		[NTC2018, 7.4.4.5.2, p.232]	[NTC2018, 7.4.4.5.2, p.232]
Length of confined boundary, Ic	$l_c \ge max[\ 0.15l_w \ 1.5b_w]$	$l_c \ge max[0.15l_w \ 1.5b_w]$		$I_c \ge max[0.20I_w \ 1.5b_w]$	$I_c \ge max[0.20l_w \ 1.5b_w]$
Mechanical volumetric ratio, ω_{wd}	$[EN1998-1-1:2004, 5.5.3.4.5(4)] \rightarrow [5.4.3.4.2(4)]$	[EN1998-1-1:2004, 5.4.3.4.2(4)]		[NTC2018, 7.4.6.2.4, p.238]	[NTC2018, 7.4.6.2.4, p.238]
Thickness limit b					
Longitudinal reinforcement ratio	[EN1998-1-1:2004, 5.5.3.4.5(8)] →[5.4.3.4.2(8)]	[EN1998-1-1:2004, 5.4.3.4.2(8)]		[NTC2018, 7.4.6.2.4, p.238] →7.4.6.2.2, p.237]	[NTC2018, 7.4.6.2.4, p.238] →7.4.6.2.2, p.237]
in the boundary elements	$\rho_{min} \ge 0.005$	<i>ρ_{min}≥ 0.005</i>		$1\% \le \rho \le 4\%$	$1\% \le \rho \le 4\%$
	[EN1998-1-1:2004 5 5 3 4 5(8)]->[5 5 3 2 2(12)]	[EN1998-1-1-2004 5 4 3 2 2/10]]		INTC2018 7 4 6 2 2	INTC2018 7 4 6 2 21
d _{bw} ≥	$\geq 0.4d_{hi} \max SQRT[f_{wli}/f_{wlw}]$	≥ 6mm		$\geq max[6mm, 0.4d_{himax}SQRT[f_{wl}/f_{y,st}]]$	≥ 6mm
	[EN1998-1-1:2004, 5.5.3.4.5(8)]->[5.5.3.2.2(12)]	[EN1998-1-1:2004, 5.4.3.2.2(11)]		[NTC2018, 7.4.6.2.2]	[NTC2018, 7.4.6.2.2]
	min[b _o /3, 125mm, 6 _{dbl}]	$min[b_{d}/2, 175mm, 8_{dbL}]$		min[b_/3, 12.5cm, 5~6 _{dbL}]	min[b_/2, 17.5cm, 8_dbL]
	[EN1998-1-1:2004 5 5 3 4 5(10)]	[EN1998-1-1:20045.4.3.4.2(9)] $\rightarrow [5,4,3,2,2(9)~(11)]$		[NTC2018, 7.4.6.2.2]	INTC2018 746221
$\omega_{wd} \ge$	$\omega_{wd,min} = 0.12$ (in critical region at the base)	$\omega_{wd,min} = 0.08$		$\omega_{wd,min} = 0.12$	$\omega_{wd,min} = 0.08$
	$\omega_{wd,min} = 0.08$ (in critical region above the base)	d _{bL,min} = 6mm			
		$s = min[b_0/2, 175mm, 8d_{bL}]$			
$\alpha \omega_{wd} \ge$	[EN1998-1-1:2004, 5.5.3.4.5(4)] = [5.4.3.4.2(4)] $\alpha \omega_{m} > 30 \mu \alpha (v, t \omega_{m}) = \omega_{m} b_{m} / b_{m} = 0.035$	[EN1998-1-1:2004, 5.4.3.4.2(4)] $\alpha \omega_{m} > 30 \mu \alpha (v_{s}+\omega_{s}) \varepsilon_{m} + b_{s}/b_{s} = 0.035$		[N1C2018, 7.4.6.2.4, p.238] $\alpha_{Was} > 30\mu_0(y_{dW}) \epsilon_{was} h_s/h_s = 0.035$	[N1C2018, 7.4.6.2.4, p.238] $\alpha \omega_{m} > 30 \mu \omega (v_{+}\omega_{-}) \varepsilon_{} b_{-}/b_{-} = 0.035$
Transverse reinforcement detail		[EN1998-1-1:2004, 5.4.3.4.2(12)]		awwa 50000000000000000000000000000000000	uu _{wd} 2 30µ¢(1 _d . u _w c _{sy,d} 0 d 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
of the boundary element by EC2		v _d ≤0.15			
				[NTC2018, 7.4.4.5.1, p.231]	[NTC2018, 7.4.4.5.1, p.231]
Diagonal compression failure	a) outside the critical region : EN1992-1-1:2004			a	a
V _{Rd,max}	$z = 0.8l_w \tan\vartheta = 1.0$			a) outside the critical region : go to §4.1.2.3.5	a) outside the critical region : go to §4.1.2.3.5
	b) in the critical region : 0.4V _{Rd,max}			$z = 0.8I_w \tan \vartheta = 1.0$	$z = 0.8I_w \tan\vartheta = 1.0$
				b) in the critical region : 0.4V _{Rd,max}	b) in the critical region : 0.4V _{Rd,max}
	[EN1998-1-1:2004 5 5 3 4 3]			[NIC2018, 7.4.4.5.1, p.231] Verifica a taglio-trazione dell'armatura dell'anima	[NIC2018, 7.4.4.5.1, p.231] Verifica a taglio-trazione dell'armatura dell'anima
	(2) $\alpha_s \ge 2.0$: go to EN1992-1-1:2004			(2) $\alpha_s \ge 2.0$: go to §4.1.2.3.5	(2) $\alpha_s \ge 2.0$: go to §4.1.2.3.5
	$V_{Ed} \leq V_{Rd,c}$: $V_{Rd} = V_{Rd,c}$			$V_{Ed} \leq V_{Rd,c}$: $V_{Rd} = V_{Rd,c}$	$V_{Ed} \leq V_{Rd,c}$: $V_{Rd} = V_{Rd,c}$
Diagonal tension failure	$V_{Ed} > V_{Rd,s} : V_{Rd} = V_{Rd,s} = A_{sw} z f_{ywd} cot \vartheta / s$			$V_{Ed} > V_{Rd,s}$: $V_{Rd} = V_{Rd,s} = A_{sw} z f_{ywd} cot \vartheta/s$	$V_{Ed} > V_{Rd,s}$: $V_{Rd} = V_{Rd,s} = A_{sw} z f_{ywd} cot \vartheta/s$
	$V_{cd} \leq V_{pd} = V_{pd,d} + V_{pd,d}$			(3) $\alpha_{\rm s} < 2.0$; horizontal web bars	$(2 - 0.8)_w$ (and $(2 - 1.0)$ (3) $\alpha_s < 2.0$; horizontal web bars
	$V_{Rd,s} = 0.75\rho_h f_{yd,h} b_{wo} \alpha_s I_w$			$V_{Ed} \le V_{Rd} = V_{Rd,c} + V_{Rd,s}$	$V_{Ed} \le V_{Rd} = V_{Rd,c} + V_{Rd,s}$
	(in the critical region, V _{Rd,c} =0, N _{Ed} is tensile)			$V_{Rd,s} = 0.75\rho_h f_{yd,h} b_{wo} \alpha_s I_w$	$V_{Rd,s} = 0.75\rho_h f_{yd,h} b_{wo} \alpha_s I_w$
				(in the critical region, V _{Rd,c} =U, N _{Ed} is tensile)	(in the critical region, V _{Rd,c} =U, N _{Ed} is tensile)
	[EN1998-1-1:2004, 5.5.3.4.4]			Verifica a scorrimento nelle zone dissipative	Verifica a scorrimento nelle zone dissipative
Sliding Failure	(1) $V_{Ed} \leq V_{Rd,S}$			(1) $V_{Ed} \leq V_{Rd,S}$	(1) $V_{Ed} \leq V_{Rd,S}$
	$(2) v_{Rd,S} - v_{dd} + v_{id} + v_{fd}$			(2) $V_{Rd,S} = V_{dd} + V_{id} + V_{fd}$	(2) $V_{Rd,S} = V_{dd} + V_{id} + V_{fd}$
BOUNDARY ELEMENT (over the rest of the wall height	(EN1008 1 1:2004 5 5 2 4 5(12)) ->(5 4 2 4 2(11))	[EN1008 1 1-2004 E 4 2 4 2(11)]			
Above the critical region	Go to EN1992-1-1:2004	Go to EN1992-1-1:2004			
	$\rho_{vert,min} = 0.005$	$\rho_{vert,min} = 0.005$			
WEB REINFORCEMENT					
Vertical reinforcement	[EN1998-1-1:2004 5 5 3 4 5(13)]		[EN1992-1-1:2004 9.6 2/1]]	[NTC2018 7 4 6 2 4 p 238]	[NTC2018 7 4 6 2 4 n 238]
ρ _{v,min}	0.002		0.002	0.002	0.002
			[EN1992-1-1:2004,9.6.2(1)]		
Pv,max			0.04		
d _{bv,min}	[EN1998-1-1:2004, 5.5.3.4.5(15)] 8mm				
	[EN1998-1-1:2004, 5.5.3.4.5(15)]			[NTC2018, 7.4.6.2.4]	[NTC2018, 7.4.6.2.4]
a bu, max	b _{wo} /8			b _{w0} /10	b _{wo} /10
S _{v.max}	[EN1998-1-1:2004, 5.5.3.4.5(15)]		[EN1992-1-1:2004,9.6.2(3)]	[NTC2018, 7.4.6.2.4]	[NTC2018, 7.4.6.2.4]
Horizontal reinforcement	mmi 250mm, 25a _{by} j		min[3" D _{wo} , 400mm]	SULIII	
	[EN1998-1-1:2004, 5.5.3.4.5(13)]		[EN1992-1-1:2004,9.6.3(1)]	[NTC2018, 7.4.6.2.4, p.238]	[NTC2018, 7.4.6.2.4, p.238]
Ph,min	0.002		A _{s,hmin} = max[0.25A _{sy} 0.001A _c]	0.002	0.002
d _{bh.min}	[EN1998-1-1:2004, 5.5.3.4.5(15)]				
	0///// [FN1998-1-1:2004 5 5 3 4 5/15]]			[NTC2018 7 4 6 2 4]	INTC2018 746241
d _{bh,max}	bw/8			bw/10	bw/10
	[EN1998-1-1:2004, 5.5.3.4.5(15)]		[EN1992-1-1:2004,9.6.3(2)]	[NTC2018, 7.4.6.2.4]	[NTC2018, 7.4.6.2.4]
	min[250mm, 25d _{bh}]		400mm	30cm	30cm
NURIVIALIZED AXIAL FUKCE	[EN1998-1-1:2004.5.5.3.4.1(2)]	[FN1998-1-1:2004.5.4.3.4.1(2)]		[7,4,4,5,1, p,230]	[7.4.4.5.1, p.230]
v _d	v _d ≤0.35	v _d ≤0.4		$v_d \le 0.4$	v _d ≤0.35

6. Pushover Load Pattern using story inertia force in RS analysis reference

• The load patterns can be created by converting response spectrum load to static load.

Procedure for generating Load Pattern

Step 1 : Create Static Seismic Load from RS force

🔯 MI	DAS/Gen	🕼 Result	-[Story Shear(R	esponse Spect	rum Analysis)]	×					Check r	ight mouse							
			Inertia	Force			Shea	r Force			Сору	• , , ,		Croate St	atic Coicm	is Load From PS Inco	in Forces		
Story	Level	Spectrum			Spring F	Reactions	Withou	t Spring	With	n Spring	Find		Ctrl+F	Create St	auc seism	ic Load From KS ther	la roices		
	(iii)		(kN)	Y (kN)	(kN)	Y (kN)	(kN)	Y (kN)	(kN)	Y (kN)	Serting Dial	10.7				Spectrum Load Case	c		
Roof	6.6000	Rx(RS)	7.9936e+001	5.6626e-001	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	Style Dialog					opeca am coua case	5		
7F	6.3000	Rx(RS)	7.1683e+000	6.4057e-002	0.0000e+000	0.0000e+000	7.9936e+001	5.6626e-001	7.9936e+001	1 5.6626e-001	Style Dialog			V RX					
6F	5.7000	Rx(RS)	1.2916e+002	1.0689e+000	0.0000e+000	0.0000e+000	8.7103e+001	6.3015e-001	8.7103e+001	1 6.3015e-001	Show Graph								
5F	5.1000	Rx(RS)	6.5297e+001	5.5283e-001	0.0000e+000	0.0000e+000	2.1599e+002	1.6990e+000	2.1599e+002	2 1.6990e+000	Activate Rec	ords							
4F 3F	4.9000	Py(PS)	1.7869e+001	1.3012e-001	0.0000e+000	0.0000e+000	2.8112e+002 2.9891e+002	2.2516e+000 2.3816e+000	2.8112e+002	2 2.2516e+000 2 2.3816e+000	Export to Ex	cel							
2F	4.2000	Rx(RS)	6.0015e+002	3.5879e+000	0.0000e+000	0.0000e+000	3.5759e+002	2.8670e+000	3.5759e+002	2 2.8670e+000	Create Stati	c Seismic Load Using RS Ine	ertia Force						
1F	0.0000	Rx(RS)	9.5803e+002	6.4508e+000	0.0000e+000	0.0000e+000	9.5803e+002	6.4508e+000	9.5803e+002	2 6.4508e+000									
Roof	6.6000	Ry(RS)	1.0638e+001	5.5534e+001	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	Dynamic Re	port Table							
7F	6.3000	Ry(RS)	1.0887e+000	6.2674e+000	0.0000e+000	0.0000e+000	1.0638e+001	5.5534e+001	1.0638e+001	1 5.5534e+001	8.5000e-001 6.20	574e+000 5.3273e+000				OK	Car	ncel	
61	5.7000	Ry(RS)	1.4281e+001	1.0518e+002	0.0000e+000	0.0000e+000	1.12/20+001	6.1/04e+001	1.12/20+00	1 6.1/04e+001	1.4000e+000 1.0	518e+002 1.4725e+002							
4F	4.9000	Ry(RS)	2.4303e+000	1.2635e+001	0.0000e+000	0.0000e+000	1.7597e+001	2.2050e+002	1.7597e+00	1 2.2050e+002	1.4000e+000 1.26	635e+001 1.7690e+001							
3F	4.3000	Ry(RS)	2.9828e+000	4.7721e+001	0.0000e+000	0.0000e+000	1.6936e+001	2.3309e+002	1.6936e+00	1 2.3309e+002	1.4000e+000 4.77	721e+001 6.6810e+001							
2F	4.2000	Ry(RS)	1.9063e+001	3.6213e+002	0.0000e+000	0.0000e+000	1.4347e+001	2.7937e+002	1.4347e+001	1 2.7937e+002	1.4000e+000 3.62	213e+002 5.0698e+002							
1F	0.0000	Ry(RS)	6.4567e+000	6.3210e+002	0.0000e+000	0.0000e+000	6.4567e+000	6.3210e+002	6.4567e+000	0 6.3210e+002	1.4000e+000 6.32	210e+002 8.8495e+002							
Loa	d Case((Qud)						Static L	.oad Cases					×	E ta	tic Loads Static Load Case 1 [D]	1		
	1.00							1 _							- -	Self Weight [SZ=-1	í		
LO	ad Type	: St	atic Load Ca	ases		•		Nan	ne i	RX Inertia			Add			Element Beam Load	s : 144		
1.0			Inortia	_	Carla Ca	1		Tue		Easthewake (E)						🔀 Floor Loads : 36			
LOG	u Case		THE Ud	•	Scale Fai	LUT:		1 yp	• · ا	Lai u iquake (L)	- 87	•	Modif	y	e 💽	Static Load Case 2 [LL ;]		
								Des	cription :	Inertia Force F	or RX		Delete	2		Element Beam Load	s : 144		
L	oad		S	cale			dd									Floor Loads : 36			
	V Inortia		1						Name		Туре	Descrip	otion	<u> </u>	E 🚺	Static Load Case 3 [WX	:]		
	A THE N	9	1			M	odify		DL	Dead Lo	ad (D)					E Wind Loads [KBC(2	09)]		
							lata		LL	Live Loa	d (L)					Static Load Case 4 [VV f		Static Lo	ad by RC
							sete		WX	Wind Lo	ad on Structure (\	∧)				Statio Load Case 5 (DV	notia : Inotia Er	area Far DVI	
									VV 1	VVIIId E0	au on Structure (r	(v)				FE Static Seismic Load	Furnonde-8/20		
									RX Inertia	Earthqua	ake (E)	Inertia Force For R	X		- a	Static Load Case 6 IBY	nertia : Inertia Fo	arce For BYI	
									RY Inertia	Earthqua	ake (E)	Inertia Force For R	RΥ.			1 Static Seismic Load	Eurocode-8(20	004)]	
								*		1.04-4	in Lond O			E	E-N Res	sponse Spectrum Analysis			
									A	id Stat	ic Load C	ase			. · · · · ·	Response Spectrum Fur	ctions : 1		
																Response Spectrum Loa	d Cases : 2		

midas Gen

7. Check Beam Deflection as per ACI318-14, ACI318M-14 and NSR-10

- The calculation of deflection takes into account cracked section and long-term behavior.
- The ratio of the analysis results considering the long-term deflection coefficient to the allowable displacement is provided.

8. Add Steel Design as per AISC360-16

Steel Design as per AISC360-16

9. Improvement of Seismic Design for ACI318-14, ACI318M-14 and NSR-10

X

Design Code : ACIS 18-14	•	Design Code :	ACI318-14		
Apply Special Provisions for Seismic De	esign		- 0 - 11		
Select Frame Type		Check Beam I	Deflection Provisions for Seismic Desig	10	
Special Moment Frames		Calent Frame T	Provisions for Selsinic Desig	,	
Intermediate Moment Frames		Select Frame 1	ype		
Ordinary Moment Frames		Special Mor	te Memort Frames		
Shear Wall Type		Ordinary M	oment Frames		
Special RC Structural Wall			omenerromes		
Boundary Element Method		Consider stro	ng column-weak beam on la	ist floor	
		Shear Wall Typ	e		
Deflection Amplification Factor (C	Id) 4.50 👻	Special RC	Structural Wall		
Important Factor (Ie)	1.25 👻	Boundary Ele	ement Method		
fc >= 0.2fck		(◎) c >= lw	/600(1.5δu/hw)		
		Deflecti	on Amplification Factor (Cd)	4.5	0
Shear for Design		Importa	nt Factor (Ie)	1.2	25
	Lindate by Code	fc >= 0	.2fck		
	opuate by code				
Method	Opuate by code				_
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2)) () Ve1 () Ve2	Shear for Desig	gn		-
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2) Ve1, Vg + a1*SUM(Mn)/L	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	Shear for Desig	gn	Update by	y C
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2) Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	Shear for Design	gn	Update by	y (
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2) Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq) (ve1 ve2 , a1 = 1 , a2 = 2	Shear for Designed Method	gn /e2)	Update by	у (©
Method MAX(Ve1,Ve2) IMIN(Ve1,Ve2) Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismin	<pre>c update by Code c)</pre>	Shear for Design Method MAX(Ve1, V Ve1, Vg + a:	gn /e2)	Update by Ve1 , a1 =	y (© 1
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2) Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismin Sub-Beam C Cantil	c Design	Shear for Design Method MAX(Ve1,V Ve1, Vg + a: Ve2, Vg + a:	gn /e2)	Update by Ve1 , a1 = , a2 =	y (© 1 2
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2) Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismik Sub-Beam C Cantil Underground Beam/Column	update by Code u) Ve1 v Ve2 , a1 = 1 , a2 = 2	Shear for Design Method MAX(Ve1,/ Ve1, Vg + a: Ve2, Vg + a: Ve2, Vg + a:	gn (e2)	Update by Ve1 , a1 = , a2 = , a2 =	y (() 1 2 2
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2) Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismik Sub-Beam Cantil Underground Beam/Column	() Ve1 Ve2 , a1 = 1 , a2 = 2	Shear for Design Method MAX(Ve1, Ve1, Vg +a: Ve2, Vg +a: Ve2, Vg +a:	yn (e2)	Update by Ve1 , a1 = , a2 = , a2 =	y (© 1 2 2
Method MAX(Ve1,Ve2) Max MIN(Ve1,Ve2) Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismin Sub-Beam Count Underground Beam/Column Torsion Design Torsion Design	() Ve1 Ve2 , a1 = 1 , a2 = 2	Shear for Design Method MAX(Ve1, Ve1, Vg + a: Ve2, Vg + a:	gn Ve2) MIN(Ve1,Ve2) 1*SUM(Mn)/L 2*Veq (Beam) 2*Veq (Column) 1 Joint Design	Update by Ve1 , a1 = , a2 = , a2 =	y (() 1 2 2
Method MAX(Ve1,Ve2) Max MIN(Ve1,Ve2) Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismin Sub-Beam Count Underground Beam/Column Torsion Design Torsion Reduction Factor for Beam :	() Ve1 Ve2 , a1 = 1 , a2 = 2	Shear for Designed Method MAX(Ve1, Ve1, Vg + a: Ve2, Ve2, Ve2, Ve2, Ve2, Ve2, Ve2, Ve2,	gn Ve2) MIN(Ve1,Ve2) 1*SUM(Mn)/L 2*Veq (Beam) 2*Veq (Column) 1:Joint Design to be excluded in Seismic D	Update by Ve1 , a1 = , a2 = , a2 = esign	y (() 1 2 2
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2 Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismid Sub-Beam Column Underground Beam/Column Torsion Design Torsion Reduction Factor for Beam : Moment Redistribution Factor for Beam :	() Ve1 Ve2 , a1 = 1 , a2 = 2 () Cesign ever	Shear for Designed Method MAX(Ve1, Ve1, Vg + at Ve2, Ve2, Ve2, Ve2, Ve2, Ve2, Ve2, Ve2,	gn Ve2) MIN(Ve1,Ve2) 1*SUM(Mn)/L 2*Veq (Beam) 2*Veq (Column) 1:Joint Design to be excluded in Seismic D 2*Cantleve ind Beam/Column	Update by Ve1 , a1 = , a2 = , a2 = esign er	y C © 1 2 2
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2 Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismid Sub-Beam Column Torsion Design Torsion Reduction Factor for Beam : Moment Redistribution Factor for Beam :	() Ve1 Ve2 , a1 = 1 , a2 = 2	Shear for Design Method MAX(Ve1, Ve1, Vg + a) Ve2, Ve2, Ve2, Ve2, Ve2, Ve2, Ve2, Ve2,	gn Ve2) MIN(Ve1,Ve2) 1*SUM(Mn)/L 2*Veq (Beam) 2*Veq (Column) 1 Joint Design to be excluded in Seismic Di © Cantileve Ind Beam/Column	Update by Ve1 , a1 = , a2 = , a2 = esign er	y C © 1 2 2
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2 Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismid Sub-Beam Column Torsion Design Torsion Reduction Factor for Beam : 40ment Redistribution Factor for Beam : OK	update by Code a) Ve1 ve1 Ve2 , a1 = 1 , a2 = 2 c Design 1 1 1 Close 1	Shear for Designed Method MAX(Ve1, Ve1, Vg + a) Ve2, Ve2, Ve2, Ve2, Ve2, Ve2, Ve2, Ve2,	gn Ve2) MIN(Ve1,Ve2) 1*SUM(Mn)/L 2*Veq (Beam) 2*Veq (Column) 1 Joint Design to be excluded in Seismic D Cantileve ind Beam/Column sign	Update by Ve1 , a1 = , a2 = esign er	y (() 1 2 2
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2 Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismik Sub-Beam Column Torsion Design Torsion Reduction Factor for Beam : 40ment Redistribution Factor for Beam : OK	update by Code a) Ve1 ve1 Ve2 , a1 = 1 , a2 = 2 c Design 1 1 1 Close 1	Shear for Designed Method MAX(Ve1,V Ve1, Vg + a: Ve2, Vg + a: Ve2, Vg + a: Beam-Column Member Types Sub-Beam V Undergrou Torsion Designed	gn We2) MIN(Ve1,Ve2) 1*SUM(Mn)/L 2*Veq (Beam) 2*Veq (Column) 1 Joint Design to be excluded in Seismic D Cantileve ind Beam/Column sign cion Factor for Beam :	Update by Ve1 , a1 = , a2 = esign er	y (2 2 1 1
Method MAX(Ve1,Ve2) MIN(Ve1,Ve2 Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismik Sub-Beam Column Torsion Design Torsion Reduction Factor for Beam : 40ment Redistribution Factor for Beam : OK	update by Code a) Ve1 Ve2 , a1 = 1 , a2 = 2	Shear for Designed Method MAX(Ve1,V Ve1, Vg + a: Ve2, Vg + a: Ve2, Vg + a: Beam-Column Member Types Sub-Beam V Undergrou Torsion Reduct Moment Redist	gn Ve2) MIN(Ve1,Ve2) 1*SUM(Mn)/L 2*Veq (Beam) 2*Veq (Column) 1: Joint Design to be excluded in Seismic Dr © Cantileve ind Beam/Column sign ion Factor for Beam : ribution Factor for Beam :	Update by Ve1 , a1 = , a2 = esign er	y (() 1 2 1 1 1
Method Method MAX(Ve1,Ve2) MIN(Ve1,Ve2 Ve1, Vg + a1*SUM(Mn)/L Ve2, Vg + a2*Veq Member Types to be excluded in Seismik Sub-Beam Column Torsion Design Torsion Reduction Factor for Beam : Moment Redistribution Factor for Beam : OK	() Ve1 Ve2 , a1 = 1 , a2 = 2 c Design ever 1 1 Close	Shear for Designed Method MAX(Ve1,V Ve1, Vg + a: Ve2, Vg + a: Ve2, Vg + a: Ve2, Vg + a: Sub-Beam Vlndergrou Torsion Reduct Moment Redist	gn Ve2) MIN(Ve1,Ve2) L*SUM(Mn)/L 2*Veq (Beam) 2*Veq (Column) Doint Design to be excluded in Seismic Do C Cantileve ind Beam/Column sign con Factor for Beam : ribution Factor for Beam :	Update by Ve1 , a1 = , a2 = esign ar	y C 1 2 1 1 1 1

In the seismic design,

the Amplification factor (a2) can be separately applied to calculate the shear force of the column and beam.

10. Add Design Option for Strong Column-Weak Beam Check on Roof

Design Code : ACI318-14	_	Design Code :
Apply Special Provisions for Seismic Design		Check Be
Select Frame Type		Apply Spe
Special Moment Frames		Select Fran
Intermediate Moment Frames Ordinary Moment Frames		Special
		 Interm
Shear Wall Type		Ordina
Special RC Structural Wall		Consider
Boundary Element Method		Character
(a) c >= lw/600(1.5δu/hw)		Snear Wal
Deflection Amplification Factor (Cd)	4.50 -	Boundar
\bigcirc fc >= 0.2fck	1.25 👻	Boundar
		⊌c> Def
Shear for Design		Imp
Sites is beagn	Update by Code	○ fc >
Method		
MAX(Ve1,Ve2)	© Ve1 ◎ Ve2	Shear for I
Ve1, Vg + a1*SUM(Mn)/L	, a1 = 1	
Ve2, Vg + a2*Veq	, a2 = 2	Method MAXO
Member Types to be excluded in Seismic Desig	ŋ	Ve1,Vg
Sub-Beam Cantilever		Ve2 , Vg
Underground Beam/Column		Ve2 , Vg
Torsion Design		Beam-Co
Torsion Reduction Factor for Beam :	1	Member Ty
		Sub-Be
Moment Redistribution Factor for Beam :	1	Vnder
ОК	Close	Torsion
		Torsion Re
		Manyato
		Moment Re

In previous versions, the checking of 'Strong Column-Weak Beam' on the roof have not been supported. From, midas Gen 2019 (v2.1), it is possible to consider the 'Strong Column-Weak Beam' on the roof.

11. Revit 2019 Interface

 Using Midas Link for Revit Structure, direct data transfer between midas Gen and Revit 2019 is available for Building Information Modeling (BIM) workflow. Midas Link for Revit Structure enables us to directly transfer a Revit model data to midas Gen, and deliver it back to the Revit model file. This feature is provided as an Add-In module in Revit Structure and midas Gen text file (*.mgt) is used for the roundtrip

Gen2019

	Functions	Revit <> Gen
	Structural Column	\diamond
	Beam	\diamond
Linear	Brace	\diamond
Elements	Curved Beam	>
	Beam System	>
	Truss	>
	Foundation Slab	\diamond
	Structural Floor	\diamond
Planar	Structural Wall	<>
Elements	Wall Opening & Window	>
	Door	>
	Vertical or Shaft Opening	>
	Offset	>
	Rigid Link	>
	Cross-Section Rotation	>
	End Release	>
Boundary	Isolated Foundation Support	>
	Point Boundary Condition	>
	Line Boundary Condition	>
	Wall Foundation	>
	Area Boundary Condition	>
	Load Nature	>
	Load Case	>
Lood	Load Combination	>
Loau	Hosted Point Load	>
	Hosted Line Load	>
	Hosted Area Load	>
Other	Material	\diamond
Parameters	Level	>

Annotation Spread Roundary Condition Callin Trays

Revit 2019

12. Add Material DB and Load Combination for Aluminum

Т	No	Name	Active	Туре	Description ^			LoadCas	e Automatic Gene	ration of Load Con	nbinations 🛛 🔜	Elasticity Data		Aluminum	
t	1	aLCB1	Strengt	Add	(D)	▶	DL(ST)		Option			Type of Design	Aluminum	Standard AA(A) -
T	2	aLCB2	Strengt	Add	(D) + (L)	*			Add	Replace					FH16 T
Ι	3	aLCB3	Strengt	Add	(D) + 1.0WX				Code Selection	,				Product Shee	t 👻
1	4	aLCB4	Strengt	Add	(D) + 1.0WY				Steel	Concrete) SRC			Concr AA(A)
∔	5	aLCB5	Strengt	Add	(D) + 1.0Wx_Ecc				Cold Form	ed Steel) Footing	Turne of Materi		Stand GB50	429-07(A)
╀	6	aLCB6	Strengt	Add	(D) + 1.0Wy_Ecc				Aluminum		Orotang	Isotropic	 Orthotropic 		
╀		aLCB7	Strengt	Add	(D) - 1.0VVX	K-								DB	*
╉	0	aLCB0	Strengt	Add	(D) - 1.0VVY				Design Code :	AA-ASD05	•	Aluminum Modulus of Elas	icity : 6.9637e+0	007 kN/m ²	
╉		aLCB9	Strengt	Add	(D) - 1.0Wy Ecc				Scale Up o	f Response Spectrum	Load Cases	Poisson's Ratio	: 0	.33	
t	11	aLCB11	Strengt	Add	(D) + 0.7EX				Scale Up Fac	tor: 1	RX -	Thermal Coeffic	ient : 2.3000e-0	005 1/[C]	
t	12	aLCB12	Strengt	Add	(D) + 0.7EY							Weight Density	: 26	.48 kN/m ³	
t	13	aLCB13	Strengt	Add	(D) - 0.7EX				Factor	Load Case	Add	Use Mass De	nsity:	2.7 kN/m³/g	
I	14	aLCB14	Strengt	Add	(D) - 0.7EY				1.000	RX	Modify				
	15	aLCB15	Strengt	Add	(D) + 0.7(1.0)(RX(RS)-				1.000	KI	Delete	Modulus of Elas	bicity : 0.0000e+0	000 kN/m²	
1	16	aLCB16	Strengt	Add	(D) + 0.7(1.0)(RX(RS)-				Manipulation	f Construction Stage	Load Case	Poisson's Ratio	:	0	
∔	17	aLCB17	Strengt	Add	(D) + 0.7(1.0)(RY(RS))				ST : Static Lo	ad Case		Thermal Coeffic	ent : 0.0000e+0	000 1/[C]	
╀	18	aLCB18	Strengt	Add	(D) + 0.7(1.0)(RY(RS)				C5 : Constru	ction Stage Load Cas	e	Weight Density	:	0 kN/m ³	
╉	19	aLCB19	Strengt	Add	(D) - 0.7(1.0)(RX(RS)+				ST Only	CS Only	ST+CS	Use Mass De	nsity:	0 kN/m³/g	
╉	20	aLCB20	Strengt	Add	(D) = 0.7(1.0)(RX(RS)-t)				Consider (orthogonal Effect					
-	21	alouzi	Strengt	Auu	(D) - 0.7(1.0)(K1(K3)1 +				Satio	ad Cases for Orthog	onal Effect	Plasticity Data			
-									Serte	ad cases for Orthog	onar criect	Plastic Materia	NONE	•	
							<u>,</u>			Rule		Inelastic Materia	Properties for Fiber Mo	del	
ор	у	Import		Auto Genera	stion Spread Sheet	Form	J		SRSS(Squ	are-Root-of-Sum-of	Squares)	Concrete	one v	Steel None	
	a 44		turn torrel						Generate	Additional Load Comb	inations	Thermal Transfer			
ne	C: 11	'Users ₩yıse	0.MIDASI11	WDownloads WR	C_EC2_04_F Browse		Make Load C	Combination Sheet	for Specia	al Seismic Load		Specific Heat	: 0	Btu/kN·[C]	
									for Vertic	al Seismic Forces		Heat Conduction	: 0	Btu/m·hr·[C]	
										Factors for Seismic D	esign	Damping Ratio	: 0		
														OK Cancel	Apply
										OK	Cancel				

13. Add options of As, use and Rho, use in shell flexural checking

midas **Design+**

Design+

1. Add Steel Design as per AISC360-16 and AISC360-16M

• Supported Design Items

: Steel Beam/Column, CFT Column, SRC Column, Crane Girder, Bolt Connection, Steel Stair

Steel Design as AISC360-16

MIDAS